511 research outputs found

    Mitochondrial effects of Ginkgo biloba extract

    Get PDF
    Oxidative stress and mitochondrial failure promote altered protein degradation, reduced neurotransmission, synapse loss and tau/hyperphosphorylation, which are early stages in the development of Alzheimer's disease (AD). A growing volume of data confirms that Ginkgo biloba extract (GBE) reduces oxidative stress and improves mitochondrial respiration and thus may be useful in preventing or slowing down the progression of AD. Treatment of Caenorhabditis elegans with GBE- extract reduces oxidative stress and extends median lifespan compared with controls. Levels of reactive oxygen species, including the superoxide anion radical, were reduced in brains from GBE-treated mice compared with controls. In older mice, GBE resulted in a protective effect by increasing production of adenosine triphosphate in neurons. A respiratory experiment indicated that GBE was able to rescue Aβ-induced defects in energy metabolism, with results suggesting long-term regulatory effects on mitochondria. GBE also had a selective effect on the activities of mitochondrial enzymes that assemble the electron transport system. The flavonoids, bilobalide and some of the ginkgolides (B and J) had a high protective capacity, indicating that a combination of several compounds within standardized Gingko biloba extracts contribute disproportionately for these protective effect

    Age-related changes of apoptotic cell death in human lymphocytes

    Get PDF
    Apoptosis seems to be involved in immunosenescence associated with aging. Moreover, in lymphocytes (PBL) of patients with Alzheimer's disease, an increased susceptibility to the apoptotic pathway has been described possibly due to impaired protection of oxidative stress. Accordingly, it seemed to be of particular interest to investigate the contribution of normal aging to the susceptibility from human lymphocytes to programmed cell death. We could show that PBL from elderly individuals (>60 years) accumulate apoptosing cells to a significant higher extent in spontaneous and activation-induced cell death compared to younger controls (<35 years). Treatment with the oxidative stressor 2-deoxy-D-ribose or with agonistic-CD95-antibody pronounced this effect even more implicating a higher sensitivity to reactive oxygen species and a higher functional CD95 expression, respectively. In addition, expression of the activation markers HLA-DR and CD95 was significantly increased in CD3+-cells of aged subjects, while expression of CD25 did not seem to be affected by age. Expression of Bcl-2 was increased in aging and correlated with the number of apoptotic cells

    Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761)

    Get PDF
    Enhanced apoptosis and elevated levels of reactive oxygen species (ROS) play a major role in aging. In addition, several neurodegenerative diseases are associated with increased oxidative stress and apoptosis in neuronal tissue. Antioxidative treatment has neuro-protective effects. The aim of the present study was to evaluate changes of susceptibility to apoptotic cell death by oxidative stress in aging and its inhibition by the antioxidant Ginkgo biloba extract EGb761. We investigated basal and ROS-induced levels of apoptotic lymphocytes derived from the spleen in young (3 months) and old (24 months) mice. ROS were induced by 2-deoxy-D-ribose (dRib) that depletes the intracellular pool of reduced glutathione. Lymphocytes from aged mice accumulate apoptotic cells to a significantly higher extent under basal conditions compared to cells from young mice. Treatment with dRib enhanced this difference, implicating a higher sensitivity to ROS in aging. Apoptosis can be reduced in vitro by treatment with EGb761. In addition, mice were treated daily with 100mg/kg EGb761 per os over a period of two weeks. ROS-induced apoptosis was significantly reduced in the EGb761 group. Interestingly, this effect seemed to be more pronounced in old mice

    Age-related impairment of human T lymphocytes' activation: specific differences between CD4+ and CD8+ subsets

    Get PDF
    The relevance of physiological immune aging is of great interest with respect to determining disorders with pathologic immune function in aging individuals. In recent years, the relevance of changes in peripheral lymphocytes in age-associated neurologic diseases has become more evident. Due to the lack of immunological studies, covering more than one event after mitogenic activation, we envisaged a new concept in the present study, aiming to investigate several events, starting from T cell receptor (TCR) ligation up to T cell proliferation. In addition, we addressed the question whether changes are present in the subsets (CD4, CD8) with aging. Phosphorylation of tyrosine residues declines with increasing age in CD4+ cells. Fewer levels of CD69 positive cells after 4 h mitogenic activation, altered expression of cytokines (IL2, IFN-gamma and TNF-alpha; 22 h) and lower proliferation (72 h) were determined in aging. Moreover, it could be shown that CD8+ lymphocytes react more effectively to mitogenic stimulation with reference to CD69 expression and proliferation in both age groups (60 years old). These data indicate that T cell activation, mediated by TCR engagement, is significantly impaired in aging and both subsets are affected. However, bypassing the TCR does not fully restore T cell function, indicating that there are more mechanisms involved than impaired signal transduction through TCR only. The results will be discussed in relation to their relevance in neurodegenerative and psychiatric disorders

    Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations

    Get PDF
    Alzheimer's disease-related mutations in the presenilin-1 gene (PS1) are leading to an elevated production of neurotoxic beta-amyloid 1-42 and may additionally enhance oxidative stress. Here, we provide in vivo evidence indicating that brains of transgenic mice expressing different human Alzheimer-linked PS1 mutations exhibit a reduced activity of two antioxidant enzymes. For this purpose, mice transgenic for human PS1 and for single and multiple PS1 mutations were generated. Mice with multiple PS1 mutations showed a significantly decreased activity of the antioxidant enzymes Cu/Zn superoxide dismutase and glutathione reductase already at an age of 3-4 months. As expected, this effect was less pronounced for the mice with a single PS1 mutation. By contrast, animals bearing normal human PS1 showed significantly elevated enzyme activities relative to non-transgenic littermate controls

    University of Mannheim @ CLSciSumm-17: Citation-Based Summarization of Scientific Articles Using Semantic Textual Similarity

    Full text link
    The number of publications is rapidly growing and it is essential to enable fast access and analysis of relevant articles. In this paper, we describe a set of methods based on measuring semantic textual similarity, which we use to semantically analyze and summarize publications through other publications that cite them. We report the performance of our approach in the context of the third CL-SciSumm shared task and show that our system performs favorably to competing systems in terms of produced summaries

    Effects of EGb 761® Ginkgo biloba extract on mitochondrial function and oxidative stress

    Get PDF
    As major sources of reactive oxygen species (ROS), mitochondrial structures are exposed to high concentrations of ROS and may therefore be particularly susceptible to oxidative damage. Mitochondrial damage could play a pivotal role in the cell death decision. A decrease in mitochondrial energy charge and redox state, loss of transmembrane potential (depolarization), mitochondrial respiratory chain impairment, and release of substances such as calcium and cytochrome c all contribute to apoptosis. These mitochondrial abnormalities may constitute a part of the spectrum of chronic oxidative stress in Alzheimer's disease. Accumulation of amyloid beta (Abeta) in form of senile plaques is also thought to play a central role in the pathogenesis of Alzheimer's disease mediated by oxidative stress. In addition, increasing evidence shows that Abeta generates free radicals in vitro, which mediate the toxicity of this peptide. In our study, PC12 cells were used to examine the protective features of EGb 761(definition see editorial) on mitochondria stressed with hydrogen peroxide and antimycin, an inhibitor of complex III. In addition, we investigated the efficacy of EGb 761 in Abeta-induced MTT reduction in PC12 cells. Moreover, we examined the effects of EGb 761 on ROS levels and ROS-induced apoptosis in lymphocytes from aged mice after in vivo administration. Here, we will report that EGb 761 was able to protect mitochondria from the attack of hydrogen peroxide, antimycin and Abeta. Furthermore, EGb 761 reduced ROS levels and ROS-induced apoptosis in lymphocytes from aged mice treated orally with EGb 761 for 2 weeks. Our data further emphasize neuroprotective properties of EGb 761, such as protection against Abeta-toxicity, and antiapoptotic properties, which are probably due to its preventive effects on mitochondria

    Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-β toxicity

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by amyloid plaques (aggregates of amyloid-β (Aβ)) and neurofibrillary tangles (aggregates of tau) and is accompanied by mitochondrial dysfunction, but the mechanisms underlying this dysfunction are poorly understood. In this review, we discuss the critical role of mitochondria and the close inter-relationship of this organelle with the two main pathological features in the pathogenic process underlying AD. Moreover, we summarize evidence from AD post-mortem brain as well as cellular and animal AD models showing that Aβ and tau protein trigger mitochondrial dysfunction through a number of pathways, such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. A vicious cycle as well as several vicious circles within the cycle, each accelerating the other, can be drawn, emphasizing the synergistic deterioration of mitochondria by tau and Aβ

    Alzheimer's disease-like alterations in peripheral cells from presenilin-1 transgenic mice

    Get PDF
    Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Expression of PS1 mutations in cell culture systems and in primary neurons from transgenic mice increases their vulnerability to cell death. Interestingly, enhanced vulnerability to cell death has also been demonstrated for peripheral lymphocytes from AD patients. We now report that lymphocytes from PS1 mutant transgenic mice show a similar hypersensitivity to cell death as do peripheral cells from AD patients and several cell culture systems expressing PS1 mutations. The cell death-enhancing action of mutant PS1 was associated with increased production of reactive oxygen species and altered calcium regulation, but not with changes of mitochondrial cytochrome c. Our study further emphasizes the pathogenic role of mutant PS1 and may provide the fundamental basis for new efforts to close the gap between studies using neuronal cell lines transfected with mutant PS1, neurons from transgenic animals, and peripheral cells from AD patients. Copyright 2001 Academic Press
    corecore